Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Life Sci ; 348: 122685, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710276

RESUMO

Gene therapy in pediatrics represents a cutting-edge therapeutic strategy for treating a range of genetic disorders that manifest in childhood. Gene therapy involves the modification or correction of a mutated gene or the introduction of a functional gene into a patient's cells. In general, it is implemented through two main modalities namely ex vivo gene therapy and in vivo gene therapy. Currently, a noteworthy array of gene therapy products has received valid market authorization, with several others in various stages of the approval process. Additionally, a multitude of clinical trials are actively underway, underscoring the dynamic progress within this field. Pediatric genetic disorders in the fields of hematology, oncology, vision and hearing loss, immunodeficiencies, neurological, and metabolic disorders are areas for gene therapy interventions. This review provides a comprehensive overview of the evolution and current progress of gene therapy-based treatments in the clinic for pediatric patients. It navigates the historical milestones of gene therapies, currently approved gene therapy products by the U.S. Food and Drug Administration (FDA) and/or European Medicines Agency (EMA) for children, and the promising future for genetic disorders. By providing a thorough compilation of approved gene therapy drugs and published results of completed or ongoing clinical trials, this review serves as a guide for pediatric clinicians to get a quick overview of the situation of clinical studies and approved gene therapy products as of 2023.

2.
Biotechnol J ; 19(4): e2300505, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651269

RESUMO

Chinese hamster ovary (CHO) cells are the commonly used mammalian host system to manufacture recombinant proteins including monoclonal antibodies. However unfavorable non-human glycoprofile displayed on CHO-produced monoclonal antibodies have negative impacts on product quality, pharmacokinetics, and therapeutic efficiency. Glycoengineering such as genetic elimination of genes involved in glycosylation pathway in CHO cells is a viable solution but constrained due to longer timeline and laborious workflow. Here, in this proof-of-concept (PoC) study, we present a novel approach coined CellEDIT to engineer CHO cells by intranuclear delivery of the CRISPR components to single cells using the FluidFM technology. Co-injection of CRISPR system targeting BAX, DHFR, and FUT8 directly into the nucleus of single cells, enabled us to generate triple knockout CHO-K1 cell lines within a short time frame. The proposed technique assures the origin of monoclonality without the requirement of limiting dilution, cell sorting or positive selection. Furthermore, the approach is compatible to develop both single and multiple knockout clones (FUT8, BAX, and DHFR) in CHO cells. Further analyses on single and multiple knockout clones confirmed the targeted genetic disruption and altered protein expression. The knockout CHO-K1 clones showed the persistence of gene editing during the subsequent passages, compatible with serum free chemically defined media and showed equivalent transgene expression like parental clone.


Assuntos
Sistemas CRISPR-Cas , Cricetulus , Edição de Genes , Células CHO , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Anticorpos Monoclonais/genética , Proteínas Recombinantes/genética , Técnicas de Inativação de Genes/métodos , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Cricetinae , Engenharia Genética/métodos
3.
Mol Ther Nucleic Acids ; 34: 102055, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37928443

RESUMO

Insulin-like growth factor I (IGF-I) is a growth-promoting anabolic hormone that fosters cell growth and tissue homeostasis. IGF-I deficiency is associated with several diseases, including growth disorders and neurological and musculoskeletal diseases due to impaired regeneration. Despite the vast regenerative potential of IGF-I, its unfavorable pharmacokinetic profile has prevented it from being used therapeutically. In this study, we resolved these challenges by the local administration of IGF-I mRNA, which ensures desirable homeostatic kinetics and non-systemic, local dose-dependent expression of IGF-I protein. Furthermore, IGF-I mRNA constructs were sequence engineered with heterologous signal peptides, which improved in vitro protein secretion (2- to 6-fold) and accelerated in vivo functional regeneration (16-fold) over endogenous IGF-I mRNA. The regenerative potential of engineered IGF-I mRNA was validated in a mouse myotoxic muscle injury and rabbit spinal disc herniation models. Engineered IGF-I mRNA had a half-life of 17-25 h in muscle tissue and showed dose-dependent expression of IGF-I over 2-3 days. Animal models confirm that locally administered IGF-I mRNA remained at the site of injection, contributing to the safety profile of mRNA-based treatment in regenerative medicine. In summary, we demonstrate that engineered IGF-I mRNA holds therapeutic potential with high clinical translatability in different diseases.

4.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003255

RESUMO

Natural killer (NK) cell immunotherapy has emerged as a novel treatment modality for various cancer types, including leukemia. The modulation of inhibitory signaling pathways in T cells and NK cells has been the subject of extensive investigation in both preclinical and clinical settings in recent years. Nonetheless, further research is imperative to optimize antileukemic activities, especially regarding NK-cell-based immunotherapies. The central scientific question of this study pertains to the potential for boosting cytotoxicity in expanded and activated NK cells through the inhibition of inhibitory receptors. To address this question, we employed the CRISPR-Cas9 system to target three distinct inhibitory signaling pathways in NK cells. Specifically, we examined the roles of A2AR within the metabolic purinergic signaling pathway, CBLB as an intracellular regulator in NK cells, and the surface receptors NKG2A and CD96 in enhancing the antileukemic efficacy of NK cells. Following the successful expansion of NK cells, they were transfected with Cas9+sgRNA RNP to knockout A2AR, CBLB, NKG2A, and CD96. The analysis of indel frequencies for all four targets revealed good knockout efficiencies in expanded NK cells, resulting in diminished protein expression as confirmed by flow cytometry and Western blot analysis. Our in vitro killing assays demonstrated that NKG2A and CBLB knockout led to only a marginal improvement in the cytotoxicity of NK cells against AML and B-ALL cells. Furthermore, the antileukemic activity of CD96 knockout NK cells did not yield significant enhancements, and the blockade of A2AR did not result in significant improvement in killing efficiency. In conclusion, our findings suggest that CRISPR-Cas9-based knockout strategies for immune checkpoints might not be sufficient to efficiently boost the antileukemic functions of expanded (and activated) NK cells and, at the same time, point to the need for strong cellular activating signals, as this can be achieved, for example, via transgenic chimeric antigen receptor expression.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Técnicas de Inativação de Genes , Células Matadoras Naturais , Antígenos CD/metabolismo
5.
Front Pharmacol ; 14: 1096614, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37025487

RESUMO

Glioma is the most devastating high-grade tumor of the central nervous system, with dismal prognosis. Existing treatment modality does not provide substantial benefit to patients and demands novel strategies. One of the first-line treatments for glioma, temozolomide, provides marginal benefit to glioma patients. Repurposing of existing non-cancer drugs to treat oncology patients is gaining momentum in recent years. In this study, we investigated the therapeutic benefits of combining three repurposed drugs, namely, metformin (anti-diabetic) and epigallocatechin gallate (green tea-derived antioxidant) together with temozolomide in a glioma-induced xenograft rat model. Our triple-drug combination therapy significantly inhibited tumor growth in vivo and increased the survival rate (50%) of rats when compared with individual or dual treatments. Molecular and cellular analyses revealed that our triple-drug cocktail treatment inhibited glioma tumor growth in rat model through ROS-mediated inactivation of PI3K/AKT/mTOR pathway, arrest of the cell cycle at G1 phase and induction of molecular mechanisms of caspases-dependent apoptosis.In addition, the docking analysis and quantum mechanics studies performed here hypothesize that the effect of triple-drug combination could have been attributed by their difference in molecular interactions, that maybe due to varying electrostatic potential. Thus, repurposing metformin and epigallocatechin gallate and concurrent administration with temozolomide would serve as a prospective therapy in glioma patients.

6.
Stem Cell Res ; 69: 103066, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36947995

RESUMO

Mutations in Colony-stimulating factor 1 receptor (CSF1R) lead to CSF1R-related leukoencephalopathy, also known as Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), a rapidly progressing neurodegenerative disease with severe cognitive and motor impairment. In this study, a homozygous and a heterozygous CSF1R knockout induced pluripotent stem cell (iPSC) line were generated by CRISPR/Cas9-based gene editing. These in vitro models will provide a helpful tool for investigating the still largely unknown pathophysiology of CSF1R-related leukoencephalopathy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Leucoencefalopatias , Doenças Neurodegenerativas , Adulto , Humanos , Doenças Neurodegenerativas/genética , Sistemas CRISPR-Cas/genética , Neuroglia , Leucoencefalopatias/genética , Mutação
8.
Genes (Basel) ; 13(12)2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36553615

RESUMO

X-linked severe combined immunodeficiency (X-SCID) is a primary immunodeficiency that is caused by mutations in the interleukin-2 receptor gamma (IL2RG) gene. Some patients present atypical X-SCID with mild clinical symptoms due to somatic revertant mosaicism. CRISPR/Cas9 and prime editing are two advanced genome editing tools that paved the way for treating immune deficiency diseases. Prime editing overcomes the limitations of the CRISPR/Cas9 system, as it does not need to induce double-strand breaks (DSBs) or exogenous donor DNA templates to modify the genome. Here, we applied CRISPR/Cas9 with single-stranded oligodeoxynucleotides (ssODNs) and prime editing methods to generate an in vitro model of the disease in K-562 cells and healthy donors' T cells for the c. 458T>C point mutation in the IL2RG gene, which also resulted in a useful way to optimize the gene correction approach for subsequent experiments in patients' cells. Both methods proved to be successful and were able to induce the mutation of up to 31% of treated K-562 cells and 26% of treated T cells. We also applied similar strategies to correct the IL2RG c. 458T>C mutation in patient T cells that carry the mutation with revertant somatic mosaicism. However, both methods failed to increase the frequency of the wild-type sequence in the mosaic T cells of patients due to limited in vitro proliferation of mutant cells and the presence of somatic reversion. To the best of our knowledge, this is the first attempt to treat mosaic cells from atypical X-SCID patients employing CRISPR/Cas9 and prime editing. We showed that prime editing can be applied to the formation of specific-point IL2RG mutations without inducing nonspecific on-target modifications. We hypothesize that the feasibility of the nucleotide substitution of the IL2RG gene using gene therapy, especially prime editing, could provide an alternative strategy to treat X-SCID patients without revertant mutations, and further technological improvements need to be developed to correct somatic mosaicism mutations.


Assuntos
Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X , Humanos , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/terapia , Sistemas CRISPR-Cas/genética , Mosaicismo , Edição de Genes/métodos , Terapia Genética/métodos
9.
Int J Mol Sci ; 23(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36361619

RESUMO

Acute myeloid leukemia (AML) and B-cell acute lymphocytic leukemia (B-ALL) are severe blood malignancies affecting both adults and children. Chimeric antigen receptor (CAR)-based immunotherapies have proven highly efficacious in the treatment of leukemia. However, the challenge of the immune escape of cancer cells remains. The development of more affordable and ready-to-use therapies is essential in view of the costly and time-consuming preparation of primary cell-based treatments. In order to promote the antitumor function against AML and B-ALL, we transduced NK-92 cells with CD276-CAR or CD19-CAR constructs. We also attempted to enhance cytotoxicity by a gene knockout of three different inhibitory checkpoints in NK cell function (CBLB, NKG2A, TIGIT) with CRISPR-Cas9 technology. The antileukemic activity of the generated cell lines was tested with calcein and luciferase-based cytotoxicity assays in various leukemia cell lines. Both CAR-NK-92 exhibited targeted cytotoxicity and a significant boost in antileukemic function in comparison to parental NK-92. CRISPR-Cas9 knock-outs did not improve B-ALL cytotoxicity. However, triple knock-out CD276-CAR-NK-92 cells, as well as CBLB or TIGIT knock-out NK-92 cells, showed significantly enhanced cytotoxicity against U-937 or U-937 CD19/tag AML cell lines. These results indicate that the CD19-CAR and CD276-CAR-NK-92 cell lines' cytotoxic performance is suitable for leukemia killing, making them promising off-the-shelf therapeutic candidates. The knock-out of CBLB and TIGIT in NK-92 and CD276-CAR-NK-92 should be further investigated for the treatment of AML.


Assuntos
Leucemia Mieloide Aguda , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Humanos , Antígenos CD19 , Antígenos B7/metabolismo , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Imunoterapia Adotiva/métodos , Células Matadoras Naturais , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo
10.
CRISPR J ; 5(1): 66-79, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34882002

RESUMO

Metachromatic leukodystrophy (MLD) is a rare genetic disorder caused by mutations in the Arylsulfatase-A (ARSA) gene. The enzyme plays a key role in sulfatide metabolism in brain cells, and its deficiency leads to neurodegeneration. The clinical manifestations of MLD include stagnation and decline of motor and cognitive function, leading to premature death with limited standard treatment options. Here, we describe a mutation-agnostic hematopoietic stem and progenitor cell (HSPC) gene therapy using CRISPR-Cas9 and AAV6 repair template as a prospective treatment option for MLD. Our strategy achieved efficient insertions and deletions (>87%) and a high level of gene integration (>47%) at the ARSA locus in human bone marrow-derived HSPCs, with no detectable off-target editing. As a proof of concept, we tested our mutation-agnostic therapy in HSPCs derived from two MLD patients with distinct mutations and demonstrated restoration of ARSA enzyme activity (>30-fold improvement) equivalent to healthy adults. In summary, our investigation enabled a mutation-agnostic therapy for MLD patients with proven efficacy and strong potential for clinical translation.


Assuntos
Leucodistrofia Metacromática , Sistemas CRISPR-Cas/genética , Edição de Genes , Terapia Genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucodistrofia Metacromática/genética , Leucodistrofia Metacromática/terapia , Mutação , Estudos Prospectivos
11.
Front Genome Ed ; 4: 1037290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687779

RESUMO

Blood disorders are a group of diseases including hematological neoplasms, clotting disorders and orphan immune deficiency diseases that affects human health. Current improvements in genome editing based therapeutics demonstrated preclinical and clinical proof to treat different blood disorders. Genome editing components such as Cas nucleases, guide RNAs and base editors are supplied in the form of either a plasmid, an mRNA, or a ribonucleoprotein complex. The most common delivery vehicles for such components include viral vectors (e.g., AAVs and RV), non-viral vectors (e.g., LNPs and polymers) and physical delivery methods (e.g., electroporation and microinjection). Each of the delivery vehicles specified above has its own advantages and disadvantages and the development of a safe transferring method for ex vivo and in vivo application of genome editing components is still a big challenge. Moreover, the delivery of genome editing payload to the target blood cells possess key challenges to provide a possible cure for patients with inherited monogenic blood diseases and hematological neoplastic tumors. Here, we critically review and summarize the progress and challenges related to the delivery of genome editing elements to relevant blood cells in an ex vivo or in vivo setting. In addition, we have attempted to provide a future clinical perspective of genome editing to treat blood disorders with possible clinical grade improvements in delivery methods.

12.
Genes (Basel) ; 13(1)2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35052377

RESUMO

Mutations of the IL2RG gene, which encodes for the interleukin-2 receptor common gamma chain (γC, CD132), can lead to X-linked severe combined immunodeficiency (X-SCID) associated with a T-B+NK- phenotype as a result of dysfunctional γC-JAK3-STAT5 signaling. Lately, hypomorphic mutations of the IL2RG gene have been described causing atypical SCID with a milder phenotype. Here, we report three brothers with low-normal lymphocyte counts and susceptibility to recurrent respiratory infections and cutaneous warts. The clinical presentation combined with dysgammaglobulinemia suspected an inherited immunity disorder, which has been proven by Next Generation Sequencing as a novel c.458T > C; p.Ile153Thr IL2RG missense-mutation. Subsequent functional characterization revealed impaired T-cell proliferation, low TREC levels and a skewed TCR Vß repertoire in all three patients. Interestingly, investigation of various subpopulations showed normal expression of CD132 but with partially impaired STAT5 phosphorylation compared to healthy controls. Additionally, we performed precise genetic analysis of subpopulations revealing spontaneous somatic reversion, predominately in lymphoid derived CD3+, CD4+ and CD8+ T cells. Our data demonstrate that the atypical SCID phenotype noticed in these three brothers is due to the combination of hypomorphic IL-2RG function and somatic reversion.


Assuntos
Subunidade gama Comum de Receptores de Interleucina/genética , Mutação/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética , Adulto , Linfócitos T CD8-Positivos , Proliferação de Células/genética , Humanos , Masculino , Fenótipo , Adulto Jovem
13.
Blood Cells Mol Dis ; 84: 102456, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32498026

RESUMO

ß-Hemoglobinopathies are among the most common single-gene disorders and are caused by different mutations in the ß-globin gene. Recent curative therapeutic approaches for these disorders utilize lentiviral vectors (LVs) to introduce a functional copy of the ß-globin gene into the patient's hematopoietic stem cells. Alternatively, fetal hemoglobin (HbF) can reduce or even prevent the symptoms of disease when expressed in adults. Thus, induction of HbF by means of LVs and other molecular approaches has become an alternative treatment of ß-hemoglobinopathies. Here, we performed a head-to-head comparative analysis of HbF-inducing LVs encoding for: 1) IGF2BP1, 2) miRNA-embedded shRNA (shmiR) sequences specific for the γ-globin repressor protein BCL11A, and 3) γ-globin gene. Furthermore, two novel baboon envelope proteins (BaEV)-LVs were compared to the commonly used vesicular-stomatitis-virus glycoprotein (VSV-G)-LVs. Therapeutic levels of HbF were achieved for all VSV-G-LV approaches, from a therapeutic level of 20% using γ-globin LVs to 50% for both IGF2BP1 and BCL11A-shmiR LVs. Contrarily, BaEV-LVs conferred lower HbF expression with a peak level of 13%, however, this could still ameliorate symptoms of disease. From this thorough comparative analysis of independent HbF-inducing LV strategies, we conclude that HbF-inducing VSV-G-LVs represent a promising alternative to ß-globin gene addition for patients with ß-hemoglobinopathies.


Assuntos
Hemoglobina Fetal/genética , Vetores Genéticos/genética , Hemoglobinopatias/terapia , Lentivirus/genética , Linhagem Celular , Células Cultivadas , Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/uso terapêutico , Hemoglobinopatias/genética , Humanos , Transdução Genética , Regulação para Cima , gama-Globinas/genética
14.
Sci Rep ; 10(1): 10133, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576837

RESUMO

ß-hemoglobinopathies are caused by abnormal or absent production of hemoglobin in the blood due to mutations in the ß-globin gene (HBB). Imbalanced expression of adult hemoglobin (HbA) induces strong anemia in patients suffering from the disease. However, individuals with natural-occurring mutations in the HBB cluster or related genes, compensate this disparity through γ-globin expression and subsequent fetal hemoglobin (HbF) production. Several preclinical and clinical studies have been performed in order to induce HbF by knocking-down genes involved in HbF repression (KLF1 and BCL11A) or disrupting the binding sites of several transcription factors in the γ-globin gene (HBG1/2). In this study, we thoroughly compared the different CRISPR/Cas9 gene-disruption strategies by gene editing analysis and assessed their safety profile by RNA-seq and GUIDE-seq. All approaches reached therapeutic levels of HbF after gene editing and showed similar gene expression to the control sample, while no significant off-targets were detected by GUIDE-seq. Likewise, all three gene editing platforms were established in the GMP-grade CliniMACS Prodigy, achieving similar outcome to preclinical devices. Based on this gene editing comparative analysis, we concluded that BCL11A is the most clinically relevant approach while HBG1/2 could represent a promising alternative for the treatment of ß-hemoglobinopathies.


Assuntos
Anemia Falciforme/genética , Sistemas CRISPR-Cas , Hemoglobina Fetal/genética , Edição de Genes/métodos , Fatores de Transcrição Kruppel-Like/genética , Proteínas Repressoras/genética , gama-Globinas/genética , Anemia Falciforme/terapia , Antígenos CD34 , Células Cultivadas , Expressão Gênica/genética , Humanos , Terapia de Alvo Molecular , Mutação
15.
Bio Protoc ; 10(24): e3850, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33855105

RESUMO

The mRNA therapeutics is a new class of medicine to treat many various diseases. However, in vitro transcribed (IVT) mRNA triggers immune responses due to recognition by human endosomal and cytoplasmic RNA sensors, but incorporation of modified nucleosides have been shown to reduce such responses. Therefore, an assay signifying important aspects of the human immune system is still required. Here, we present a simple ex vivo method called 'RNA ImmunoGenic Assay' to measure immunogenicity of IVT-mRNAs in human whole blood. Chemically modified and unmodified mRNA are complexed with a transfection reagent (TransIT), and co-incubated in human whole blood. Specific cytokines are measured (TNF-α, INF-α, INF-γ, IL-6 and IL-12p70) using ELISAs. The qPCR analysis is performed to reveal the activation of specific immune pathways. The RNA ImmunoGenic Assay provides a simple and fast method to detect donor specific - immune response against mRNA therapeutics. Graphic abstract: Schematic representation of RNA ImmunoGenic Assay.

16.
Brief Funct Genomics ; 19(3): 191-200, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31844895

RESUMO

Chimeric antigen receptor (CAR)-modified T cells have raised among other immunotherapies for cancer treatment, being implemented against B-cell malignancies. Despite the promising outcomes of this innovative technology, CAR-T cells are not exempt from limitations that must yet to be overcome in order to provide reliable and more efficient treatments against other types of cancer. The purpose of this review is to shed light on the field of CAR-T cell gene editing for therapy universalization and further enhancement of antitumor function. Several studies have proven that the disruption of certain key genes is essential to boost immunosuppressive resistance, prevention of fratricide, and clinical safety. Due to its unparalleled simplicity, feasibility to edit multiple gene targets simultaneously, and affordability, CRISPR/CRISPR-associated protein 9 system has been proposed in different clinical trials for such CAR-T cell improvement. The combination of such powerful technologies is expected to provide a new generation of CAR-T cell-based immunotherapies for clinical application.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Imunoterapia/métodos , Humanos
17.
Blood Rev ; 40: 100641, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31761379

RESUMO

Due to pioneering in vitro investigations on gene modification, gene engineering platforms have incredibly improved to a safer and more powerful tool for the treatment of multiple blood and immune disorders. Likewise, several clinical trials have been initiated combining autologous hematopoietic stem cell transplantation (auto-HSCT) with gene therapy (GT) tools. As several GT modalities such as lentivirus and gene editing tools have a long developmental path ahead to diminish its negative side effects, it is hard to decide which modality is optimal for treating a specific disease. Gene transfer by lentiviruses is the platform of choice for loss-of-mutation diseases, whereas gene correction/addition or gene disruption by gene editing tools, mainly CRISPR/Cas9, is likely to be more efficient in diseases where tight regulation is needed. Therefore, in this review, we compiled pertinent information about lentiviral gene transfer and CRISPR/Cas9 gene editing, their evolution to a safer platform for HSCT, and their applications on other types of gene disorders based on the etiology of the disease and cell fitness.


Assuntos
Edição de Genes , Terapia Genética , Doenças Hematológicas , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Doenças do Sistema Imunitário , Lentivirus , Autoenxertos , Doenças Hematológicas/genética , Doenças Hematológicas/terapia , Humanos , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/terapia
18.
Bone Marrow Transplant ; 54(12): 1940-1950, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30903024

RESUMO

Allogeneic hematopoietic stem cell transplantation (HSCT) is a standard therapeutic intervention for hematological malignancies and several monogenic diseases. However, this approach has limitations related to lack of a suitable donor, graft-versus-host disease and infectious complications due to immune suppression. On the contrary, autologous HSCT diminishes the negative effects of allogeneic HSCT. Despite the good efficacy, earlier gene therapy trials with autologous HSCs and viral vectors have raised serious safety concerns. However, the CRISPR/Cas9-edited autologous HSCs have been proposed to be an alternative option with a high safety profile. In this review, we summarized the possibility of CRISPR/Cas9-mediated autologous HSCT as a potential treatment option for various diseases supported by preclinical gene-editing studies. Furthermore, we discussed future clinical perspectives and possible clinical grade improvements of CRISPR/cas9-mediated autologous HSCT.


Assuntos
Sistemas CRISPR-Cas/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Transplante de Células-Tronco/métodos , Condicionamento Pré-Transplante/métodos , Transplante Homólogo/métodos , Humanos
19.
Sci Rep ; 8(1): 16776, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30425265

RESUMO

Gene therapy has always been a promising therapeutic approach for Cystic Fibrosis (CF). However, numerous trials using DNA or viral vectors encoding the correct protein resulted in a general low efficacy. In the last years, chemically modified messenger RNA (cmRNA) has been proven to be a highly potent, pulmonary drug. Consequently, we first explored the expression, function and immunogenicity of human (h)CFTR encoded by cmRNAhCFTR in vitro and ex vivo, quantified the expression by flow cytometry, determined its function using a YFP based assay and checked the immune response in human whole blood. Similarly, we examined the function of cmRNAhCFTR in vivo after intratracheal (i.t.) or intravenous (i.v.) injection of the assembled cmRNAhCFTR together with Chitosan-coated PLGA (poly-D, L-lactide-co-glycolide 75:25 (Resomer RG 752 H)) nanoparticles (NPs) by FlexiVent. The amount of expression of human hCFTR encoded by cmRNAhCFTR was quantified by hCFTR ELISA, and cmRNAhCFTR values were assessed by RT-qPCR. Thereby, we observed a significant improvement of lung function, especially in regards to FEV0.1, suggesting NP-cmRNAhCFTR as promising therapeutic option for CF patients independent of their CFTR genotype.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/fisiopatologia , Fibrose Cística/terapia , Terapia Genética/métodos , Pulmão/fisiopatologia , Animais , Linhagem Celular , Fibrose Cística/genética , Modelos Animais de Doenças , Humanos , Fluxo Expiratório Máximo/genética , Camundongos , RNA Mensageiro/química , RNA Mensageiro/genética
20.
Mol Cell Pediatr ; 5(1): 9, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30430274

RESUMO

BACKGROUND: ß-Thalassemia is an inherited hematological disorder caused by mutations in the human hemoglobin beta (HBB) gene that reduce or abrogate ß-globin expression. Although lentiviral-mediated expression of ß-globin and autologous transplantation is a promising therapeutic approach, the risk of insertional mutagenesis or low transgene expression is apparent. However, targeted gene correction of HBB mutations with programmable nucleases such as CRISPR/Cas9, TALENs, and ZFNs with non-viral repair templates ensures a higher safety profile and endogenous expression control. METHODS: We have compared three different gene-editing tools (CRISPR/Cas9, TALENs, and ZFNs) for their targeting efficiency of the HBB gene locus. As a proof of concept, we studied the personalized gene-correction therapy for a common ß-thalassemia splicing variant HBBIVS1-110 using Cas9 mRNA and several optimally designed single-stranded oligonucleotide (ssODN) donors in K562 and CD34+ hematopoietic stem cells (HSCs). RESULTS: Our results exhibited that indel frequency of CRISPR/Cas9 was superior to TALENs and ZFNs (P < 0.0001). Our designed sgRNA targeting the site of HBBIVS1-110 mutation showed indels in both K562 cells (up to 77%) and CD34+ hematopoietic stem cells-HSCs (up to 87%). The absolute quantification by next-generation sequencing showed that up to 8% site-specific insertion of the NheI tag was achieved using Cas9 mRNA and a chemically modified ssODN in CD34+ HSCs. CONCLUSION: Our approach provides guidance on non-viral gene correction in CD34+ HSCs using Cas9 mRNA and chemically modified ssODN. However, further optimization is needed to increase the homology directed repair (HDR) to attain a real clinical benefit for ß-thalassemia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA